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Cross-species, cross-modality survey of bursting neurons

Key Investigators
● Chenggang Chen, Johns Hopkins University

Project Description
● Comparing the proportion of burst spiking neurons in the sensory cortex of non-human primates

(macaque and marmoset) and rodents (gerbil and mouse).
● Comparing the auditory and visual tuning properties of burst spiking neurons (BU), non-burst

fast-spiking neurons (FS), and non-bust regular spiking neurons (RS)

Approach and Plan
● Extract the spike waveform and spike train from raw data, then use that information to classify all the

units into three types: BU, FS, and RS. Characterize their tuning properties and running modulations.

Progress and Next Steps
● Download datasets of various species from different archives
● Change the non-NWB format dataset to NWB format
● Extract the spike train from four NWB datasets using the same code
● Classify the neuronal population into three groups based on firing pattern and spike waveform
● Compute the auditory and visual tuning properties of three types of neurons
● In the future, I will further compare the difference among three types of neurons

Data
● Change to NWB format; lab data
● Change to NWB format; https://crcns.org/data-sets/vc/pvc-5/about
● Change to NWB format; https://gin.g-node.org/dianamaro/Amaro_et_al_2021_CurrBiol
● Already in NWB format; https://dandiarchive.org/dandiset/000021
● Already in NWB format; https://dandiarchive.org/dandiset/000022

Materials
● See below ‘Background and References’ for details

Background and References
● Mouse visual cortex, https://www.nature.com/articles/s41586-020-03171-x
● Macaque visual cortex, https://www.sciencedirect.com/science/article/pii/S0042698914000200
● Gerbil auditory cortex, https://www.sciencedirect.com/science/article/pii/S0960982221008204
● Marmoset auditory cortex, https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001642
● Marmoset auditory cortex, https://academic.oup.com/cercor/article/29/3/1199/4840634
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Decoding history dependent neural activity in primary and
higher visual areas

Key Investigators
● Lan Luo, Duke University

Connect with me: https://www.linkedin.com/in/lan-luo-q42/

Project Description
● Investigate how does visual adaptation (history dependency of visual signals in the brain) transform the

encoding of stimulus identity using Allen Institute Visual Behavior 2-Photon Imaging & Neuropixels
recordings dataset

Approach and Plan
● Visual Behavior 2-Photon Imaging data viz with dimensionality reduction using different neural

subpopulations
● Building linear and nonlinear decoder to decode visual input identity from neural activity
● Explore Visual Behavior Neuropixels data

Progress and Next Steps
● Decoding history dependent neural activity in visual areas

Data
● https://portal.brain-map.org/explore/circuits/visual-behavior-2p
● http://portal.brain-map.org/explore/circuits/visual-behavior-neuropixels

Materials
● https://github.com/lanluo9/inter/blob/4cfd5f89c713439b94803b5e078b1dff518a8834/results/poster/post

er%20neurobio%20retreat%202021.pdf
● https://github.com/lanluo9/inter

Background and References
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Cross-Lab and Cross-Species co-clustering of cortical
intracellular patch-clamp data

Key Investigators
● Sam Mestern, UWO

Project Description
With this project, we aim to derive novel insights regarding cortical neuron differences between species and
recording conditions. We are also aiming to demonstrate the usefulness of a novel computational method for
integrating electrophysiological data

Approach and Plan
● Extract intracellular single neuron features (using IPFX) from several datasets bridging across labs and

species.
● From here, we will apply novel computational methods to integrate the datasets and facilitate

co-clustering of similar species

Progress and Next Steps
● Downloaded several intracellular datasets from dandihub
● Extracted overall features from each dataset using IPFX’s run_feature_collection
● Co-cluster datasets using extracted features

Data
● Tolias Patch-seq - https://dandiarchive.org/dandiset/000008
● AI Patch-seq - https://dandiarchive.org/dandiset/000020
● AI Patch-seq in human - 000023, 000228, 000142, 000209, 000288, 000109

Materials
● https://github.com/AllenInstitute/ipfx

Background and References
1. https://www.nature.com/articles/s41586-020-2907-3
2. https://www.cell.com/cell/pdf/S0092-8674(20)31254-X.pdf
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Using DANDI open datasets in transfer learning for decoding
proprioception from neuronal calcium image using artificial
neural network

Key Investigators
● Seungbin Park

Project Description
Decoding proprioception is necessary for proprioceptive feedback to brain-machine interface to improve its
movement performance. Artificial neural network is expected to be advantageous in revealing complex
encoded proprioception from the two-photon calcium image. However, building massive datasets of the
two-photon image and behavior recording is extremely challenging because animal experiments and behavior
training require much time, effort, and sophisticated techniques. Moreover, it inevitably accompanies sacrificing
numerous animals. Using DANDI open datasets can be a good solution for these problems. Transfer learning
refers to the methodology to create high-performance learners using datasets from different domains that can
be obtained more easily [1]. DANDI archive has already built various high-quality datasets so they can be
exploited for transfer learning. I aim to use the dataset titled as ‘A map of anticipatory activity in mouse motor
cortex (DANDI ID: 000015). It includes two-photon images of the population activity of neurons related to
behavior across a wide range of motor cortex [2]. The dataset is expected to be appropriate for the purpose in
that proprioception and anticipatory timing are highly correlated [3]. The main goal is to improve the
performance of the neural network trained with my own datasets of mouse limb positions and fluorescence
traces extracted from two-photon images through transfer learning using the DANDI open datasets.

Approach and Plan
● 1. Load and explore the dataset.
● 2. Preprocess the DANDI dataset for training a neural network.
● 3. Train a neural network with the preprocessed DANDI dataset.
● 4. Train a neural network with my own dataset using pre-trained parameters from step #3.
● 5. Evaluate the performance.

Progress and Next Steps
● I am in step #1. I plan to follow the following steps in Approach and Plan section.
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Data
● A Map of Anticipatory Activity in Mouse Motor Cortex (DANDI ID: 000015)

https://dandiarchive.org/dandiset/000015?search=motor%20anticipatory&pos=1

Materials
● DANDI example notebooks: https://github.com/dandi/example-notebooks
● PyNWB documentation: https://pynwb.readthedocs.io/en/stable/
● Suite2p documentation: https://suite2p.readthedocs.io/en/latest/
● Deeplabcut documentation: http://www.mackenziemathislab.org/deeplabcut

Background and References
3. [1] Weiss, Karl, Taghi M. Khoshgoftaar, and DingDing Wang. "A survey of transfer learning." Journal of

Big data 3.1 (2016): 1-40.
4. [2] Chen, Tsai-Wen, et al. "A map of anticipatory activity in mouse motor cortex." Neuron 94.4 (2017):

866-879.
5. [3] Christina, Robert W. "Proprioception as a basis of anticipatory timing behavior." Motor Control.

Academic Press, 1976. 187-199.
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Validating latent variable models in dandisets with rich
behavioral data

Key Investigators
Ben Lansdell, St Jude

Project Description
Tracking behavioral data from freely behaving animals, possibly in conjunction with neural recordings, is an
exciting and growing direction in neuroscience. These datasets present rich opportunities for discovery,
particularly by enabling the study of naturalistic behavior over long time spans. Unsupervised or
semi-supervised learning methods that characterize neural activity and/or behavior are useful for summarizing
and studying such datasets. I'm interested in understanding these methods, in datasets that have an
interesting behavioral component, in addition to neural recordings. The first goal is to understand and
implement in my own libraries the ability to read pose-tracking data from NWB datasets. The second goal is to
use dandisets to investigate the utility of novel unsupervised/semi-supervised learning methods.

Approach and Plan
First goal: make NWB datasets, with ndx-pose data, readable in python library Ethome.
Second goal: recently there have been a number of interesting latent variable models, using deep generative
models, that characterize neural activity, and that simultaneously model the relation between neural activity
and behavior or task variables. One example is pi-VAE [1]. The authors claim this provides a more nuanced,
yet still interpretable, characterization of the data, and could serve as an alternative to some of the standard
methods in computational neuroscience. Is this true? In their AJILE12 dataset, Peterson et al [2] develops
multiple linear regression to characterize the neural activity and its relation to behavioral and task related
variables, using it to say which factors are most often encoded by activity in ECoG arrays. I plan to test this
latent variable method, to see if the important variables revealed by this latent space analysis are the same as
those revealed by the linear model.

Progress and Next Steps
Read behavior and ecog data from AJILE12. Next steps: format data into format expected by pi-VAE (list of
spike data matrices for each trial/behavior), design similar analysis to Fig 6 of AJILE12 paper (Peterson et al
2021 [2]): recompute goodness of fit measures with/without different behavioral variables to judge the degree
to which they’re encoded in the data.

Data
Dandisets 55 and 231.

Materials
Behavior analysis code: https://github.com/benlansdell/ethome
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Background and References
[1] Zhou and Wei 2020. Learning identifiable and interpretable latent models of high-dimensional neural activity
using pi-VAE. https://arxiv.org/pdf/2011.04798.pdf
[2] Peterson et al. 2021. Behavioral and Neural Variability of Naturalistic Arm Movements.
https://www.eneuro.org/content/8/3/ENEURO.0007-21.2021.long#sec-18
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Sub-seconds Neural Emotion-Coding in Amygdala under
Diverse Hippocampal Theta-Gamma States

Key Investigators
● Lu Zhang, Georgia Institute of Technology

Project Description
Leveraging my methods to capture hippocampal theta-gamma coupling states (Zhang et al., 2019), I found that
“non-place” cells, traditionally being ignored, played a role in discriminating goals during spatial navigation
(Zhang, et al, 2022). Following the application of my method within hippocampal circuit above, I will further
investigate how hippocampal (HPC) theta-gamma states (TG states) affect neural emotion-coding in amygdala
(AMY), a brain region highly interacting with hippocampus during emotion memory consolidation.

Approach and Plan
● Step 1: Categorizing HPC theta oscillations into slow-gamma, medium gamma and fast-gamma states

using my previous computational methods integrating Morse wavelet and k means clustering.
● Step 2: Test whether the activities of amygdala cells are different across diverse HPC at both single unit

(Firing rate) and population level (Bayesian decoding).
● Step 3: Test whether HPC-AMY interactions differs during different theta-gamma states, at LFP-LFP,

unit-LFP, and unit-unit level.
● Step 4: Test whether the results in above steps varies across different behavioral states (learning

period, REM sleep, and after memory consolidation)

Progress and Next Steps
● Downloading the data-set.
● Working on.

Data
● https://dandiarchive.org/dandiset/000061/
● Or https://crcns.org/data-sets/hc/hc-14

Materials
● Video: https://jrnlclub.org/research-films/sub-second-dynamics-theta-gamma-coupling
● Code: https://github.com/singerlabgt/IndividualThetaCluster

Background and References
● Background: Oscillatory activity is often characterized based only on its frequency content, and

interactions or nesting of one faster oscillation in slower such as gamma (30–150 Hz) nested in theta
(6–12 Hz) in the hippocampus (HPC)  (Buzsáki and Draguhn, 2004). However, current methods to

12

https://dandiarchive.org/dandiset/000061/
https://crcns.org/data-sets/hc/hc-14
https://jrnlclub.org/research-films/sub-second-dynamics-theta-gamma-coupling
https://github.com/singerlabgt/IndividualThetaCluster


assess cross-frequency coupling averaging neural signals over long consecutive time periods, which
obscure cycle-by-cycle sub-second dynamics that underlie cognitive computations (Kopell et al., 2014).
To address that, I developed novel computational approaches combining signal processing and
machine learning, to capture moment-to-moment changes in hippocampal theta-gamma coupling in
rodents at single theta cycle timescale (Zhang et al., 2019). My methods provide new approaches to
investigate the neural code in hippocampus or hippocampal interactions with other regions in spatial
navigation, memory, and their alternations in aging and brain diseases (Zhang, et al, 2022). I plan to
extend the application of my method to other brain region interacting with hippocampus, such as
amygdala in this project.

● References

Zhang, L., Prince, S.M., Paulson, A.L., Singer, A.C. (2022). Goal discrimination in hippocampal non-place cells
when place information is ambiguous. Proc. Natl. Acad. Sci. 119 (11), e2107337119.

Zhang, L., Lee, J., Rozell, C., and Singer, A.C. (2019). Sub-second dynamics of theta-gamma coupling in
hippocampal CA1. Elife 8.

Kopell, N.J., Gritton, H.J., Whittington, M.A., and Kramer, M.A. (2014). Beyond the connectome: The dynome.
Neuron 83, 1319–1328.

Buzsaki, G. and Draguhn, A. (2004). Neuraonal oscillations in cortical networks. Science 304, 1926-1929.
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Feature-based embeddings of non-stationary ECoG

Key Investigators

● Brendan Harris, USyd

Project Description

Describe the spatio-temporal dynamical structure of an EcoG recording using an existing pipeline for
summarizing non-stationary neural data in a low-dimensional space of time-series features.

Approach and Plan

● Load the dataset into Julia (electrode traces and annotated joint positions) from the NWB file. Begin
developing packages that wrap the DANDI and pynwb tools in Julia.

● Feed the dataset into the existing pipeline, then visualize the results (showing per-channel ECoG
transitioning between dynamical regimes, and characterize the salient dynamical properties of each
regime).

Progress and Next Steps

● Data are downloaded via the DANDI cli, and loaded into Julia. Automated downloads are not yet
implemented.

● Identify a subject and time interval from the full dataset for a pilot analysis.

● Visualize the non-stationary feature-based embedding of the test data (e.g. animate the regions of
feature space occupied by each EcoG channel against behavioral data such as the joint position or
event labels, over time).

Data

https://dandiarchive.org/dandiset/000055

Materials
● https://github.com/brendanjohnharris/Catch22.jl

● https://github.com/brendanjohnharris/ParameterInference.jl

Background and References

● C. H. Lubba, S. S. Sethi, P. Knaute, S. R. Schultz, B. D. Fulcher, and N. S. Jones, “catch22: CAnonical
Time-series CHaracteristics,” Data Mining and Knowledge Discovery, vol. 33, Art. no. 6, 2019.

● S. Güttler, H. Kantz, and E. Olbrich, “Reconstruction of the parameter spaces of dynamical systems,”
Physical Review E, Art. no. 5, 2001.
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Finding neuronal networks based on shared temporal activity
across task conditions

Key Investigators
● Noga Mudrik (JHU)

Project Description
I propose a framework for finding interpretable functional neuronal networks presented across various
non-stationary task conditions, and for assessing neural encoding uncertainty in the networks latent space. I
choose to take inspiration from the GraFT algorithm [2] and to develop a multi-dimensional version of it for data
from Poisson distribution. This method thus uses neural activity data recorded under different task conditions
and finds a low dimensional meaningful representation of the neural activity in each trial, described by matrix
factorization where one matrix describe the neuronal networks components and the other refer to their
temporal activity. Each of these temporal activities’ matrices can be viewed as a trajectory in the networks’
space and trajectories associated with different trials of the same condition can jointly form a manifold. These
network-space manifolds will then be further analyzed to assess the encoding uncertainty by considering the
manifolds’ internal structure and separability. In addition to identifying neuronal circuits, testing their activities
under varied settings, and using them for uncertainty estimation, this data-driven graph-based framework will
also be used to improve understanding of — 1) how different task components are encoded in the brain; 2) the
role of inter-regional brain connectivity versus local brain oscillations in driving behavior; 3) abnormal brain
activity under pathological or stress conditions; 4) neural variability between and within conditions; and 5)
behavior robustness to neural damage.

Approach and Plan
● Find the most apropriate dandiset for this task
● Data pre-processing and creating the tensors.
● Continue working on the python code for the multidimensional GraFT
● After finding the neuronal networks - study how their composition and activity differ over task condition

and study the network level dynamics to assess encoding uncertainty.

Progress and Next Steps
● Start writing the multi dimensional graft code
● Choosing and dowloading the initial dataset
● Data pre-processing
● Next step: apply the data to the multi-dimensional graft

Data
● https://dandiarchive.org/dandiset/000127
● (for future steps: https://dandiarchive.org/dandiset/000028?search=NEUROPIXELS&pos=1)
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Materials
● Currently my code is in a private github repository (when I finish I will change it to public). The first

version of the code (the python implementation to the graft method) is described and can be
downloaded from here -
https://pypi.org/project/GraFT-Python/

●

Background and References
1. Raeed H Chowdhury, Joshua I Glaser, Lee E Miller (2020) Area 2 of primary somatosensory cortex

encodes kinematics of the whole arm eLife 9:e48198.  https://doi.org/10.7554/eLife.48198
2. A. S. Charles, et al., “GraFT: Graph Filtered Temporal Dictionary Learning for Functional Neural

Imaging,” bioRxiv, p. 2021.05.24.445514, May 2021, doi: 10.1101/2021.05.24.445514.
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Human iPSC-derived neurons recapitulate phenotypic variation within the Human
cortex

Key Investigators
● Michael Zabolocki, SAHMRI

Project Description

Human induced pluripotent stem cells (hiPSCs) offer a model which has the capacity to recapitulate the genetic
underlying of the human brain across early neurodevelopment. Of these, organoid and monolayer models have
repeatedly demonstrated that genetic signatures unique to human pre- and postnatal transitions can be
recapitulated in-vitro. However, whether the functionality of these neurons compare to the human brain itself is
unknown at the single-cell level. To address this, cortical hiPSC-derived neurons were then patch-clamped at
late-stage time points (> 70 days) and compared to Allen Brain Institutes’ human cortical brain biopsy acute
brain slice patch-clamp database. We reveal that subpopulations of hiPSC derived neurons in organoid or
monolayer models emerge to share similar functional properties with the Human cortex, independent of
morphological differences. Following on from previous work, integrating additional Human cortical patch-clamp
datasets available on Dandi will expand the significance of such findings. Within said subpopulations,
patch-seq data available across both Dandi and Allen Brain datasets will be isolated to determine genetic
differences in ion channel gene expressions.

Approach and Plan

- Load raw intracellular EPhys recordings (both voltage and current clamp recordings), collected from all Dandisets
containing Human cortical intracellular EPhys.

- Intracellular Ephys feature extraction using a custom Python pipeline for voltage clamp and current clamp recordings.

- Quantify overlapping features between layers and regions with iPSC datasets, and calculate similarity scores

- Visual outputs and quantified metrics between subpopulations

- Extract ion channel expression data using available patch-seq data from ‘similar’ Human isolated
subpopulations

Materials

https://github.com/mzabolocki/humanbiopsy_ipsc_ephys

https://github.com/mzabolocki/BrainSpike
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Progress and Next Steps
● Data is downloaded via the DANDI, raw recordings extracted for all relevant Human cortical datasets.

Downloads currently set to local.
● Identify relevant stimulus types (voltage clamp, current clamp long depolarisation, ramp, sag protocols)

in the DANDI data.
● Compare features from Dandisets to existing.

Data

● Dandisets 000293 and 000297

Background and References

https://www.cell.com/cell-stem-cell/pdfExtended/S1934-5909(19)30337-6
https://www.nature.com/articles/s41593-021-00802-y
https://www.nature.com/articles/s41467-022-32115-4
https://www.nature.com/articles/s41593-021-00906-5
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Exploring the network of excitatory neurons with regularized GLMs

Key Investigators
● Tzu-Chi
● Yi-Yun
● Josefina

Project Description
This project explored statistical methods for extracting network structure from point process observations.

Approach and Plan
● We analyzed spike trains from excitatory cortical neurons under REM sleep and model each spike train

as a linear combination of the past activity of other neurons, up to 1 time bin in the past.

Progress and Next Steps
● Progress made:

○ Explored methods to infer functional connectivity between neurons based on firing history
○ Built a graphy display of network from the connectivity

● Future plan:
○ Assess goodness of fit
○ Explore non-linear models
○ Compare network structure across different states, awake, non-REM, REM, and across brain

regions

Data: Dandiset 000041
Materials:

https://github.com/junipertcy/NeuroDataReHack
https://docs.google.com/presentation/d/1Y6b-s2QMO0UFuWa6hob9OCrirwljyVw-Bg6OqtcGuKI/edit?usp=shari
ng

Background and References
Watson, B.O., Levenstein, D., Greene, J.P., Gelinas, J.N. and Buzsáki, G., 2016. Network homeostasis and
state dynamics of neocortical sleep. Neuron, 90(4), pp.839-852.

Truccolo, W., Eden, U.T., Fellows, M.R., Donoghue, J.P. and Brown, E.N., 2005. A point process framework for
relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of
neurophysiology, 93(2), pp.1074-1089.
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Elucidating Neural Learning Rules from Calcium Imaging
Data

Key Investigators
● Felix Pei
● Alessandro Salatiello

Project Description
We want to analyze data from a mouse learning a task and see if any insight can be found regarding the
learning rules used by the brain

Approach and Plan
● Download NWB data and gain familiarity with format
● Analyze changes in neural activity during training
● Compare with computational models using different learning rules.

Progress and Next Steps
● Continue improving computational models to better fit data and cover wider range of learning rules
● Extend calcium imaging analysis to single-trial

Data
● https://dandiarchive.org/dandiset/000016/

Materials
● https://github.com/felixp8/neurodatarehack-2022/

Background and References
6. Najafi F, Elsayed GF, Cao R, Pnevmatikakis E, Latham PE, Cunningham JP, Churchland AK. Excitatory

and Inhibitory Subnetworks Are Equally Selective during Decision-Making and Emerge Simultaneously
during Learning. Neuron. 2020 Jan 8;105(1):165-179.e8. doi: 10.1016/j.neuron.2019.09.045.

7. Murray JM. Local online learning in recurrent networks with random feedback. eLife. 2019. 8:e43299.
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Fitting state space models in SSM repo to NWB datasets

Key Investigators
● David Zoltowski

Project Description
My goal is to fit state space models in the SSM code package to NWB datasets. I looked at two different
human recording datasets.

Approach and Plan
I processed the data into trials and fit HMM / LDS / rSLDS models to the trial data.

Progress and Next Steps
I analyzed recordings from human PPC while a tetraplegic participant generated neural activity corresponded
to attempted finger movements. I found some differences in dynamics across the different finger movements.

Data
● https://dandiarchive.org/dandiset/000147?pos=8

Materials
● https://github.com/lindermanlab/ssm

Background and References
8.
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Constructing time-probability-matrices from simultaneously
recorded visual areas using state space models

Key Investigators
● Brock Carlson
● Blake Mitchell
● David Zoltowski

Project Description
We would like to calculate Phi

Approach and Plan
● Describe the steps of your planned approach to reach the objectives.

Progress and Next Steps
● Describe the progress you have made on the project, e.g., which objectives you have achieved and

how.
● Describe the next steps you are planning to take to complete the project.

Data
● Links to the dandiset(s) that you are using.

Materials
● Links to materials relevant to the project, e.g., code, videos.

Background and References
9. Use this space for information that may help people better understand your project, e.g., links to

papers.
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Project Title: Identification of theta states in the prefrontal
cortex

Key Investigators
● John Stout

Project Description
Neural activity, paced at theta frequency (4-12Hz) in the medial prefrontal cortex, is linked to memory-guided
decision making. I would like to identify when theta oscillations are present, then use those epochs to build
models that predict behavioral/cognitive/neural states.

Approach and Plan
● First, identify approaches to extract “high” theta power states using extracellular recordings

Progress and Next Steps
Have spent a lot of time troubleshooting, but some progress has been made. Working on using a linear
regression over log-transformed power spectra, then using a metric, like mean squared error, to identify when
theta oscillations might deviate from the “typical” cortical oscillations based on the 1/f law

Data
DANDI Archive (000041)

Materials
Not ready yet!

Background and References
1. O'Neill, P. K., Gordon, J. A., & Sigurdsson, T. (2013). Theta oscillations in the medial prefrontal cortex are

modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion.
Journal of Neuroscience, 33(35), 14211-14224.

2. Jones, M. W., & Wilson, M. A. (2005). Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial
memory task. PLoS biology, 3(12), e402.

3. Hallock, H. L., Wang, A., & Griffin, A. L. (2016). Ventral midline thalamus is critical for hippocampal–prefrontal
synchrony and spatial working memory. Journal of Neuroscience, 36(32), 8372-8389.
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Spyglass: data analysis framework for reproducible
neuroscience research

Key Investigators
● Kyu Hyun Lee (Loren Frank lab, UCSF)

Project Description
Spyglass is a data analysis framework that brings together many open source tools, such as NWB, Datajoint,
Spikeinterface, and others. Our lab has built reproducible analysis pipelines using these tools. Our goal is to
make it possible to analyze any NWB file from DANDI with Spyglass. More specifically, we want to
demonstrate that a neural decoding algorithm based on state-space models can be easily applied to data from
other labs and can yield scientific insights.

Approach and Plan
One difficulty in achieving our goal is the heterogeneity among NWB files. To overcome this issue we plan to
add a way to ingest the NWB file by augmenting information with an associated configuration yaml file.

Progress and Next Steps
● We have made progress toward achieving this goal, though it is not yet complete.
● We have demonstrated that the analysis tools we are using can be applied to data collected from other

hippocampal labs by applying neural decoding to Dandiset 59.

Data
● https://dandiarchive.org/dandiset/000059

Materials
● https://github.com/LorenFrankLab/spyglass

Background and References
10. Use this space for information that may help people better understand your project, e.g., links to

papers.
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Contrast sensitivity across layers and cell types within
primary visual cortex

Key Investigators
● Blake Mitchell
● Brock Carlson

Project Description
To analyze V1 responses ( 2-photon calcium imaging) to full field images with varying image contrast.

Approach and Plan
Describe the steps of your planned approach to reach the objectives.

Progress and Next Steps
● Describe the progress you have made on the project, e.g., which objectives you have achieved and

how.
● Describe the next steps you are planning to take to complete the project.

Data
● Links to the dandiset(s) that you are using.

Materials
● Links to materials relevant to the project, e.g., code, videos.

Background and References
11. Use this space for information that may help people better understand your project, e.g., links to

papers.
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Ensemble computational models of neurons individually
tuned with multimodal intracellular electrophysiology data

Key Investigators
● Krishna Pusluluri (Georgia State University)
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Probing excitatory computations underlying probabilistic
learning

Key Investigators
● Nuttida Rungratsameetaweemana (Salk Institute)

Project Description
It is not well understood how excitatory and inhibitory neurons within each cortical regions (as well as along the
cortical hierarchy) work together to allow efficient information processing in dynamic environments.

Approach and Plan
● Constructing biologically plausible artificial neural network models.
● Developing a training paradigm to have the models perform cognitive tasks (such as probabilistic

decision making) used in human and animal experiments.
● Investigating the neural computations that support successful learning and performance of the models

on these tasks.
● Analyzing experimental data while the animals performed the same cognitive tasks.

Progress and Next Steps
● Developed recurrent neural network models to perform probabilistic learning tasks.
● Found that increased excitatory connections within neurons selective for likely sensory stimuli

(‘expected stimuli’) support successful learning of statistical regularities.
● Next step is to look for how/where this dynamics is represented in the cortex.

Data
● 000037

Materials
● -

Background and References
12. Gillon et al., bioRxiv, 2021. Learning from unexpected events in the neocortical microcircuit
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