Optical Physiology in NWB

NEURODATA WITHOUT BORDERS

Optical Physiology in NWB

The community has made calcium imaging analysis tools that support reading and/or writing of NWB files:

- Suite2p (Pachitariu et al., bioRxiv)
- CalmAn (Giovannucci et al., 2019)
- CIAtah (Corder, Ahanonu, et al., 2019)
- EXTRACT (Inan et al., bioRxiv)

We do not have time to fully explain the details of how these packages work...

...so we will simply explain the input-output (I/O) workflow

Input: Storing 2p data in NWB

- The NWB data type for two-photon data is called TwoPhotonSeries
 - Recommended to store the imaging data internally instead of externally

[5]: nwbfile.acquisition["TwoPhotonSeries"]

[5]: TwoPhotonSeries pynwb.ophys.TwoPhotonSeries at 0x4792728784 Fields:

> comments: Generalized from RoiInterface conversion: 1.0 data: <HDF5 dataset "data": shape (38191, 796, 512), type "<u2"> description: no description dimension: <HDF5 dataset "dimension": shape (2,), type "<i4"> imaging_plane: ImagingPlane pynwb.ophys.ImagingPlane at 0x4792729120

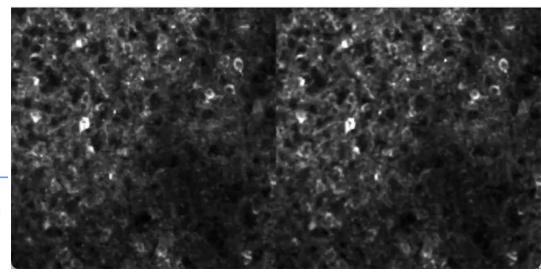
Suite2p on NWB 2p imaging data

- 1. Install suite2p: <u>https://github.com/MouseLand/suite2p</u>
- 2. Select an NWB file. Explore NWB file using nwbwidgets to make sure that the file contains a TwoPhotonSeries with internally stored imaging data
- 3. Rename NWB file from *.nwb to *.h5
- 4. In suite2p, select File > Run suite2p
- 5. Select input format "h5"
- 6. Enter data path "/acquisition/TwoPhotonSeries/data"
- 7. Click "Add directory to data_path" and select path of the directory with the data
- 8. Change "save_NWB" output setting from 0 to 1
- 9. Click "RUN SUITE2P" button

Main settings	Output settings	Registration
nplanes	preclassify	do_registration
1	0.0	1
nchannels	save_mat	align_by_chan
1	0	1
functional_chan	save_NWB	nimg_init
1	1	300
tau	combined	batch_size
1.0	1	500
fs	reg_tif	smooth_sigma
10.0	0	1.15
do_bidiphase	reg_tif_chan2	smooth_sigma_time
0	0	0
bidiphase	aspect	maxregshift
0	1.0	0.1
multiplane_parallel	delete_bin	th_badframes
0	0	1.0
ignore_flyback	move_bin	keep_movie_raw
-1	0	0
		two_step_registration
		0

Suite2p: Load ROIs from NWB file

CalmAn on NWB 2p imaging data


- 1. Install CalmAn: https://github.com/flatironinstitute/CalmAn
- 2. Use NWB file and name of TwoPhotonSeries object (usually "TwoPhotonSeries")

CalmAn on NWB 2p imaging data

- 1. Install CalmAn: https://github.com/flatironinstitute/CalmAn
- 2. Use NWB file and name of TwoPhotonSeries object (usually "TwoPhotonSeries")

- Use CalmAn to do motion correction, CNMF fitting, and plot and review results
- 4. Save estimates back to NWB file

cnm2.estimates.save_NWB(
"/Users/rly/example_movies/Sue_2x_3000_40_-46.nwb",
imaging_rate=fr

